Synthesis and Pharmacological Evaluation of Some Pyrrolo[2,1-a]isoquinolines

Cesare Casagrande, Ambrogio Invelinizzi, Rosano Ferrini, anı Giorgio G. lierrari

Research Laboratories, Simes S.p.A., Milan (.1.jori), Italy
Received November 13, 1967
Revised Manuscript Received February 12, 1968
A series of componnds with the pyrrolo $[2,1-a]$ isoquinoline ring system was synthesized by Tschitschibabin cyclization and subsequent transformations. The pharmacological activity of the new compomis was studied.

Organic and medicinal chemists have carried out numerous investigations of the benzo [a]quinolizine ring system (1) to elucidate the structures and biosynthetic pathways of the emetine group of alkaloids, and to sy'nthesize amebicidal and psychotherapeutic ${ }^{1}$ agents.

1

2

Comparatively few derivatives of the closely related pyrrolo $[2,1-a]$ isoquinoline ring system (2) have been synthesized ${ }^{2}$ and none of these has been examined for biological activity. The purpose of this study was to synthesize a series of compounds with this nucleus and to investigate their pharmacological activity.
Owing to the lack of information about biological activity, it seemed useful to have a variety of structural types available. We preferred to maintain the 6,7dimethoxyisoquinoline moiety throughout the series, since this moiety, common to emetine, papaverine, tetrahydropalmatine, metofoline, ${ }^{3}$ and related active substances, ${ }^{1}$ seems compatible with, if not essential for, strong biological activity.
An extension of the Tschitschibabin synthesis of pyrrocolines ${ }^{4}$ to isoquinolines and 3,4 -dihydroisoquinolines provided a direct approach to ring system 2 and also allowed the preparation of compounds with the desired structural variety by using appropriate halocarbonyl and isoquinoline starting materials. A few examples of the Tschitschibabin reaction applied to 1-methylisoquinolines had previously been reported. ${ }^{5}$
We prepared three groups of compounds, starting with papaverine (Scheme I), 1-methyl-6,7-dimethoxy3,4 -dihydroisoquinoline (Scheme II), and ethyl 6,7-

[^0]Scheme I

3
4, $\mathrm{R}=\mathrm{H}$
5, $\mathrm{R}=\mathrm{OMe}$
6, $\mathrm{R}=\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$
7, $\mathrm{R}=\mathrm{OH}$
8, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}$
9, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NEt}_{2}$

11, $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NMe}_{2}$
dimethoxy-1,2,3,4-tetrahydroisoquinolinidene-1-acetate (Scheme III). All cyclizations were carried out in one stage without isolating the quaternary intermediates; equimolecular quantities of reagents and excess sodium bicarbonate were used. A careful choice of conditions was necessary for good, or even reasonable, yields; usually phenacyl bromide reactions provided good yields, but in the case of haloketo esters, chloro derivatives were preferable to the corresponding bromo compounds.
The reaction of papaverine ($\mathbf{3}$, Scheme I) with phenacyl bromide, p-methoxy-, and p-benzyloxyphenacyl bromide gave 4, 5, and 6, respectively. In preparing 6 on a larger scale, the mother liquors yielded a small amount of a yellow compound, analyzing for $\mathrm{C}_{50} \mathrm{H}_{43} \mathrm{NO}_{7}$. This compound showed an aromatic ketone band in the ir and gave a dinitrophenylhydrazone. Structure 12 was considered to be highly probable on the basis of the strong nucleophilic character of position 3 of pyrrocoline. ${ }^{6}$ The benzyloxy derivative 6 was debenzylated with palladium-on-charcoal catalyst in moist acetone to 7. Diazomethane methylation of $\mathbf{7}$ to $\mathbf{5}$ proved that the nucleus was not hydrogenated under these conditions. liour basic ethers ($8-11$) were prepared from 7 sodium salt and t-aminoalkyl chlorides.
Reaction of 1-methyl-6,7-dimethoxy-3,4-dihydroisoquinoline (23, Scheme II) and phenacyl bromide gave the 2-phenyl derivative $13 .{ }^{7}$ Hydrogenation of 13

[^1]

37, $\mathrm{R}=\mathrm{Et}$
38, $R=H$
39, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NEt}_{2}$
witl Raney niokel catalys at $95-100^{\circ}$ and 130 atm afforderl the hexaliydro (14) and decaliydro (16) derivatives. Structure 14 was confirmed by serthesis from 23 with bromomethyl eyclohexyl ketone. Compomad 16 (mol wt 315 by mass spectometry) showed only the characteristic veratrole chromophore in the uv. compared to the more complex strong absorption of compounds witl the aromatic pyrrole nucleus (Table 1). It did not show NH bands in the ir and was not aretylated by acetic anhydride in pyridine, thus excluding the possibility of hydrogenolysis of the bonzelie 4 10b (N bond. We also obtained 16 by finther hydrogenation of $\mathbf{1 4}$ under the same conditions. When 13 was hydrogenated using platinum instead of nickel catalyst at 25° and 5 atm, a partial transformation to its tetrahydro derivative $\mathbf{1 5}$ took place. Com-
pound $\mathbf{1 5}$ behaved like 16 toward acetylation and in the uv, but showed evidence of an masubstituted phenyl group in the nom spectiom. Data from ir and ame spectra were inadequate to clarify the conformations of 15 and 16.

Reaction of 1-metlyy-6,7-dimethoxy-3,4-dihydroiso'luinoline (23) with haloketo esters gave carbethoxysubstituted prrolo [2,1-a]isoquinolines 17,24 , and 29 (Scheme II). Alkaline saponification furnished the corresponding acids 18, 25, and 30 . The dicarboxylic acid $\mathbf{3 0}$ gave the cyclic anhydride 31 , which reacted with \therefore. N-diethylethylenediamine to give the "phthalamic" acid 32, readily decarboxylated to 26 . The direction of attack on the cyelic anhydride was demonstrated by 1reparing 26 from 24 with diethylethylenediamine. Sonce water-soluble derivatives of the already knowns-2-methyl-3-carboxylic acid (20) were also prepared because ethyl ester 19, included in the pharmacological screening. had shown lypotensive activity despite its insolubility (see Pharmacology). Owing to the sensitivity of 20 to acids, a common characteristic of this acrics, preparation of the acid chloride failed under a varicty of conditions; however, basie esters $\mathbf{2 1}$ and $\mathbf{2 2}$ were obtained by transesterification with amino alcohols and sodium methoxide in tohene. Mamich bases 27 and 28 were also prepared and the expected structure was confirmed by the C-1 proton resonance disappearing in the umr spectrum ($\tau 3.64$ in the parent compound spectrum), while the (-10 proton signal was shifted downfield from $\tau 2.90$ to 1.79 . The dicarbethoxy compound 22 did not participate in the Mannich reaction under the same conditions.

A group of compounds (34-39) (Scheme IlI) was also prepared from ethyl 6,7-dimethoxy-1,2,3, 4-tetrahydro-isoruanolinidene-1-acetate (33) by similar methods.

Table I								
Derivatives of Pyrrolo [2,1-a]isoquinolines								
Compr	Starting material	Method	Yield, \%	Recrystn solvent ${ }^{\text {th }}$	Mp, ${ }^{\circ} \mathrm{C}$	Formula	Analyses	Uv spectra ${ }^{\text {b }} \lambda_{\text {max. }} \mathrm{m} \mu(\log \epsilon)$
4	3, phenacyl bromide	A	58	E.	18.3-184	$\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{4}$	C, H, N	$\begin{aligned} & 332(3.98), 277(4.67), \\ & 238(4.48) \end{aligned}$
5	3, p-methoxyphenacyl bromide ${ }^{c}$	A	60	EA	177-179	$\mathrm{C}_{24} \mathrm{H}_{2 i} \mathrm{NO}_{3}$	C, H, N	
6	3 , p-benzyloxyphenacyl bromide ${ }^{d}$	A	48	B	174-176	$\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{NO}_{3}$	$\mathrm{H}, \mathrm{N} ; \mathrm{C}^{\text {e }}$	
7	6		89	E	195-197	$\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{5}$	C, H, N	
8	7	B	80	E	146-147	$\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5}$	C, H, N	
9	7	B	88	E	148-150	$\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5}$	C, H, N	
10	7	B	71	E-B	170-171	$\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5}$	C, H, N	
11	7	B	75	EA	163-165	$\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{5}$	C, H, N	
12	3, p-benzyloxyphenacyl bromide ${ }^{d}$	A	5	B	188-189	$\mathrm{C}_{50} \mathrm{H}_{43} \mathrm{NO}_{7}$	C, H, N	
13	$\underline{3},{ }^{\prime}$ plienacyl bromide	A	79	EA	138-140	$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{2}$	C, H, N	$\begin{aligned} & 319(4.29), 286(4.24) \\ & 252(4.40) \end{aligned}$
14	28, ${ }^{f}$ bromomethyl ayclohexyl ketone ${ }^{g}$	A	40	EA	120-122	$\mathrm{C}_{20} \mathrm{H}_{2 j} \mathrm{NO}_{2}$	C, H, N	$312^{h}(4.19), 298(4.23)$
15	13	\ldots	31	LP	121-123	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2}$	C, H, N	$286(3.54){ }^{\text {i }}$
16	13		47	PE	92-93	$\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{2}$	C, H, N	286 (3.52) ${ }^{i}$
17	$2: 3,{ }^{\prime}$ ethyl γ-chloroacetoacetate ${ }^{i}$	A	40	LP	91-93	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{4}$	C, H, N	$308^{h}(4.15), 196$ (4.22)
18	17	C	83.5	E	159-160	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}$	C, H, N	
21	19^{k}	F	70	LP	98-99	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$	C, H, N	
22	19	F	73	EA	102-104	$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4}$	N	$307^{*}(4.13), 286$ (4.29)
24	$23,{ }^{f}$ ethyl chloropyrnvate ${ }^{d}$	A	28	E	111-113	$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{4}$	C, H, N	
25	$\because 4$	C	91	E	232-234 dec	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{4}$	C, H, N	
26	31		58	T	144-146	$\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{3}$	C, H, N	
27	19	G	45	LP	154-155	$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}$	N	
28	19	G	38	LP	111-112.5	$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$	N	
29	23 , ethyl chorooxalacetate ${ }^{m}$	A	75	E-W	90-92	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{6}$	C, H, N	$\begin{aligned} & 318(4.20), 282(4.06), \\ & 246(4.29) \end{aligned}$
30	29	1)	95	D.IF-E	228-230 dec	$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{6}$	N	
31^{n}	30	E	65	D	239-240	$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{5}$	C, H, N	
32	31		73.5	B	170-172	$\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5}$	$\mathrm{N}, \mathrm{COOH}^{\circ}$	
34	$33,^{p}$ ethyl chloropyrnvate ${ }^{t}$	A	25	E-LP	138-139	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{6}$	C, H, N	317 (4.21), 290 (4.15)
35	34	D	61	E	228-230	$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{6}$	N	
36	35	E	74	DMF	286-287 dee	$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{5}$	C, H, N	
37	33, phenacyl bromide	A	75	EA	172-174	$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{4}$	C, H, N	330 (4.32), 219 (4.48)
38	37	C	97	DMF-E	209-211	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{4}$	N	
39	37	F	72	EA	137-139	$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$	N	

${ }^{a} \mathrm{~B}=$ benzene, $\mathrm{D}=$ dioxane, $\mathrm{DMF}=$ dimethylformamide, $\mathrm{E}=$ ethanol, $\mathrm{EA}=$ ethyl acetate, $\mathrm{LP}=$ petroleum ether $\left(\mathrm{bp} 80-120^{\circ}\right)$, $\mathrm{PE}=$ petroleum ether (bp $40-\overline{7} 0^{\circ}$), $\mathrm{T}=$ toluene, $\mathrm{W}=$ water. ${ }^{b}$ In absolute EtOH. ${ }^{c}$ F. Kröhnke and K. Ellegast, Chem. Ber., 86, 1556 (1953). $\quad{ }^{d}$ H. M. Priestley and E. Moness, J. Org. Chem., 5, 355 (1940). e e C: calcd, 77.0; found, 76.3. / E. Späth and N. Polgar, Monatsh. Chem., 51, 197 (1929). ${ }^{\text {g F F. Asinger, M. Thiel, G. Peschel, and K. H. Meinicke, Ann. Chem., 619, 145 (1958). } h \text { Shoulder }}$ ${ }^{i}$ Homoveratrilamine 280 (3.41), 229 (3.89); salsolidine 286 (3. 54). ${ }^{i}$ J. F. Hamel, Bull. Soc. Chim. France, 29, 396 (1921). ${ }^{k}$ See ref 8. ${ }^{〔}$ J. Parrod, Compt. Rend., 218, 600 (1944). ${ }^{m}$ P. Bouvier and H. Gault, Bull. Soc. Chim. France, 711 (1963). ${ }^{n} \operatorname{Ir}(\mathrm{KBr}$ disk), $1845-$ 1825 and $177.5 \mathrm{~cm}^{-1}$. ${ }^{\circ}$ Titration with LiOCH_{3} in $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{MeOH} .{ }^{p}$ A. R. Battersby, H. T. Openshaw, and H. C. S. Wood, J. Chem. Soc., $2465(1953)$; N. A. Nelson, K. O. Gelotte, Y. Tamura, H. B. Sinclair, J. M. Schuck, W. J. Bauer, and R. W. White, J. Org. Chem., 26, 2599 (1961).

Both 1,2-and 2,3-dicarboxylic acids (30,35) were readily decarboxylated to mono-2-carboxylic acid $\mathbf{2 5}$ near their melting points. The reactions outlined in Schemes II and III with the correlations and physical data described demonstrate the normal course of Tschitschibabin reaction between isoquinolines and haloketo esters in the cases investigated. ${ }^{8}$

Pharmacology.-All compounds soluble as such, or as salts, were submitted to a group of pharmacological tests in vitro and in vivo. Insoluble compounds were tested only in vivo as carboxymethylcellulose suspensions. Compounds showing significant activity and

[^2]their pertinent tests are listed in Table II. No compound had analgetic ${ }^{9}$ or anesthetic ${ }^{10}$ effects in the tailclip tests or effects on the rats reactive motility in the open-field test. ${ }^{11}$ Compound $\mathbf{1 5}$ showed α-adrenergic blocking activity. Compounds 10, 15, 21, and 22 compared favorably with papaverine as smooth muscle relaxants. Compounds 16 and 32 were considered worthy of a further investigation. At a dose of 2-4 $\mathrm{mg} / \mathrm{kg}$ iv 16 inhibited atrial fibrillation induced by local application of acetylcholine in the dog heart in situ ${ }^{12}$

[^3]Thale 1 I

Compl	Rablitatrinm					Hi.al prame		Sontanems motiliont mek k		$\begin{gathered} \text { 1.1)iny } \\ \text { makr } \\ \text { iv } \end{gathered}$
	Ner inotropic effect ${ }^{\text {c }}$	$\begin{gathered} \text { l:pi- } \\ \text { nephrine } \\ \text { inhilt } \end{gathered}$	Amichor lineygic efieet	$\begin{aligned} & \text { Syasmen } \\ & \text { lytiv: } \\ & \text { effect } \end{aligned}$	$\begin{aligned} & \text { Ral, } l_{1} \text {, } \\ & \text {,teris" } \end{aligned}$	Hi.... He. k ¢				
S	25	10	7.4	>10	>111	(1)	1	50	1	20
?	20	>10	\checkmark	111	>10	10	11	10.50	+	$1:$
10	-5)	>111	7.4	5	>111	111	$1)$	-0)	11	15
11		万	14	>10	>10	10	1	. 21	0	-
15	20	>10	20	\leqslant	11.01			2.5	$t+$	
16	7	>10	0.1	>10	8.5	5	--30	-i	$t+t$	20
19	\ldots	. .	\cdots	:1)	-37	80	$+$	
21	>50	>10	1.3	\wedge	5	50	11	\cdots	\ldots	$1: 1$
23	30	>10	35	7	10	10	--40	51	$-$	11
$\because 7$	5	>10	40	21	>10	111	1	-0)	11	:0
-8	85	>10	20	10		10	1			(i)
80	>50		>i0	.		11	- $2: 3$			1110
:2	>50	>10	>50	>10	210	.	- 5	31	$+$	(it)
						20	--4!			

Pronethalol
Atropine sulfate
Papnverine
TICl
Phentolamme
HCl

16
0.5
 rine, $0.5 \mu \mathrm{~g} . \mathrm{ml}$; acetylcholine bromide, $0.1 \mu \mathrm{~g} / \mathrm{nl} ; \mathrm{BaCl}_{2}, 100 \mu \mathrm{~g} / \mathrm{ml}$; and epinephrine, $1 \mu \mathrm{~g}$ ml, respectively. © Doser (iv) :mal effecton femoral arterial pressure of anesthetized dogs. a Intraduodenal administration in 0. .f carboxymethylcelnowe anspension. ${ }^{h}$ Rednction of spontaneous motility of mice in Jaquet oscillating cages: + , slight: ++ , moderate: +++ , shong. 'Approximatr values of acute toxicity in mice.
and protected rats from CaCl_{2}-induced ventricular arrhythmia. ${ }^{13}$ This compound also blocked hypertensive response to epinephrine ($0.1 \mu \mathrm{~g} / \mathrm{kg}$ iv) in pithed rats ($E D_{i 0} 3 \mathrm{mg} / \mathrm{kg}$ iv) and protected aggregated mice against amphetamine toxicity ($\mathrm{ED}_{\mathrm{yo}} 30 \mathrm{mg} / \mathrm{kg}$ ip). An oral dose of $50 \mathrm{mg} / \mathrm{kg}$ decreased charcoal propulsion ${ }^{14}$ in the rat intestine to 40% of the control value. The hypotensive effect in dogs induced by 32 (see Table II) lasted $1-2 \mathrm{hr}$. In rabbits, doses of $50-60 \mathrm{mg} / \mathrm{kg}$ iv lowered arterial pressure to $60-50 \%$ of control values for 1.52 hr . Compound 32 showed very low toxicity ill laboratory animals. The acute $L D_{50}$ in rats and dogs was greater than $1 \mathrm{~g} / \mathrm{kg}$ po. Subacute studies in rats at a dose of $100 \mathrm{mg} / \mathrm{kg}$ po daily for 30 days showed no toxic effects on weight, behavior, and major organs.

In order to investigate its mechanisms of action, 32 was administered to anesthetized dogs at ; $5-20 \mathrm{mg} / \mathrm{kg}$ iv. The contractile force of the heart and the rate of increase in ventricular pressure ($\mathrm{d} p / \mathrm{d} t$) were measured according to the techniques described by Bergamaschi ${ }^{1 i}$ and Veragut and Krayenbüll. ${ }^{16}$ Cardiac output and coronaly flow were measured using electromagnetic flowmeters (Biotronex BL 610) implanted around the aorta and circumflex branch of the left coronary artery. ${ }^{17}$ In all the experiments there was an increase in contractile force, $\mathrm{d} p / \mathrm{d} l$, cardiac output, and coronary flow: while peripheral and coronary resistances were reduced. ${ }^{\text {1s }}$

[^4]Tahle 111

On the basis of the above findings, further clemical and pharmacological investigations are in progress on compound 32 and its amelog, as well as on the anslogs of 15 and 16.

Experimental Section ${ }^{19}$

Melting points were taken in capillaries and are motorrected. Uv, ir, nmr spectra and the mass spectrmm were obtained, ruspectively, with a Hitachi-Perkin-Elmer spectophotometer, : Perkin-Elmer Model 237 spectrophotometer, a Perkin-Elnocr Model R 10 instrument, and a LKB gas chromatograpb-nusis spectrometer.

Reactions between Isoquinolines and Halo Ketones (Method A)--The appropriate phenacyl bromide (0.05 mole) or chloroke(o ester (0.055 mole) was added to 0.05 mole of the appropriate isoquinoline and 0.15 mole of NaHCO_{3} in 130 ml of absolate EtOH with contimons stirring. The mixture was stirred minder the conditions indicated in Table III and the product was isolated as follows: (a) after cooling, the precipitate was filtered,

[^5]washed (EtOH , water) to dissolve the salts, and then dried and recrystallized; (b) the EtOH was evaporated under reduced pressure to half volume and $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{ml})$ was added. After $3-5$ hr at 0°, the precipitate was filtered, washed ($\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}$), then dried, and recrystallized.

In a preparation of 6 on a 0.5 -mole scale a yellow precipitate, mp 158-163 ${ }^{\circ}$, was obtained from the $\mathrm{C}_{6} \mathrm{H}_{6}$ mother liqnors of the recrystallization, by concentrating to half-volume and diluting with EtOH. This product, when recrystallized twice firm $\mathrm{C}_{6} \mathrm{H}_{6}$ gave 9.35 g of 1-(3,4-dimethoxyphenyl)-2-(p-benzyloxy-phenyl)-3-(p-benzyloxyphenacyl)-8,9-dimethoxypyrrolo $[2,1-a]$ isoquinoline (12): mp 188-189 ; ir spectrım (KBr disk), 1685 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O})$. Anal. $\left(\mathrm{C}_{50} \mathrm{H}_{43} \mathrm{NO}_{7}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

The 2,4-dinitrophenylhydrazone had mp $139-140^{\circ} \mathrm{dec}(\mathrm{EtOH})$. Anal. $\left(\mathrm{C}_{56} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{10}\right) \mathrm{N}$.

When 23 and diethyl chlorooxalacetate were mixed in absolute EtOH, a crystalline addition compound was immediately formed, mp 93-94 ${ }^{\circ}$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2} \cdot \mathrm{C}_{8} \mathrm{H}_{11} \mathrm{ClO}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{Cl}$, N. This compound did not contain $\mathrm{Cl}-$. Hydrogenation in 50% aqueous EtOH with PtO_{2} at room temperature afforded salsolidine hydrochloride (6,7-dimethoxy-1-methyl-1,2,3,4-tetrahydroisoquinoline) and ethyl malate, both identical with authentic samples (ir comparison).

1-(3,4-Dimethoxyphenyl)-2-(p-hydroxyphenyl)-8,9-dimethoxy-pyrrolo[2,1-a]isoquīnolīne (7)--Two grams of $10 \% \mathrm{Pd}-\mathrm{C}$ moistened with 4 ml of $\mathrm{H}_{2} \mathrm{O}$ was added to a solution of 10 g of benzyloxy compound 6 in 350 ml of $\mathrm{Me}_{2} \mathrm{CO}$. The mixture was hydrogenated in a Parr apparatus under 5 atm . The absorption of H_{2} was completed in 6 hr . The solution was shaken under H_{2} for another hour, then filtered and slightly acidified with an $\mathrm{Et}_{2} \mathrm{O}$ solution of dry HCl giving $8 \mathrm{~g}(89 \%)$ of yellow $7 \cdot \mathrm{HCl}, \mathrm{mp} 209-$ 212°. An analytical sample had mp 220-223 ($\mathrm{DMF}-\mathrm{Me}_{2} \mathrm{CO}$). Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{5} \cdot \mathrm{HCl}\right) \mathrm{N}, \mathrm{Cl}$.

The hydrogenation did not affect the ring system; a sample of 7 in MeOH with ethereal $\mathrm{CH}_{2} \mathrm{~N}_{2}$ gave the methoxy compound 5 (mixture melting point and ir comparison). The hydrochloride with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution yielded free $7, \mathrm{mp} 195-197^{\circ}$ (EtOH). Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

1-(3,4-Dimethoxyphenyl)-2-(p-dialkylaminoalkoxyphenyl)-8,9dimethoxypyrrolo $[2,1-a]$ isoquinolines (Method B). -The dialkylaminoalkyl ethers (8-11) were obtained as follows. Finely powdered $7 \cdot \mathrm{HCl}(9.82 \mathrm{~g}, 0.02$ mole), suspended in 200 ml of dry PhMe, was treated with 0.06 mole of $\mathrm{NaOMe}(46 \mathrm{ml}$ of 7% solntion in dry MeOH). After stirring for $10 \mathrm{~min}, 0.02$ mole of dialkylaminoalkyl chloride hydrochloride was added. The MeOH was distilled under reduced pressure and the mixture was heated at 100° with stirring for 3 hr , then cooled and extracted with 10% AcOH . The acid extracts were made alkaline with NaOH and extracted with CHCl_{3}. The extracts were washed $\left(\mathrm{H}_{2} \mathrm{O}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and then evaporated. The residue was purified by crystallizing as indicated.

1,2,3,5,6,10b-Hexahydro-2-cyclohexyl-8,9-dimethoxypyrrolo-[2,1-a]isoquinoline (16) -Compound $13(80 \mathrm{~g})$ in 400 ml of absolnte EtOH and 400 ml of dioxane was hydrogenated in an antoclave with stirring at $95-100^{\circ}$ under 130 atm of pressure for 80 hr with 25 g of Raney Ni. The catalyst was filtered and the solvent was evaporated under reduced pressure. The residue was taken up with $10 \% \mathrm{AcOH}$ and filtered. The insoluble fraction consisted of 5,6 -dihydro-8,9-dimethoxy-2-cyclohexylpyrrolo $[2,1-a]$ isoquinoline (14) (see below). The acidic filtrate was slightly alkalinized with $\mathrm{NH}_{4} \mathrm{OH}$ and extracted with CHCl_{3}. The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was distilled at $160-185^{\circ}(0.002 \mathrm{~mm})$. Crystallizing from petroleum ether (bp $30-70^{\circ}$) gave $39 \mathrm{~g}\left(47 \%\right.$) of $16, \mathrm{mp} 79-81^{\circ}$. Further crystallization did not increase the melting point; purification was achieved through the hydrogen sulfate or the hydrobromide perbromide. The hydrogen sulfate salt precipitated from EtOAc and recrystallized (EtOH-Me $e_{2} \mathrm{CO}$); mp 170-171 ${ }^{\circ}$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{2} \cdot \mathrm{H}_{2} \mathrm{SO}_{4}\right) \mathrm{N}$.

The hydrobromide perbromide, a yellow powder, was obtained from AcOH with Br_{2} and anhydrous HBr and washed by trituration with $\mathrm{CH}_{3} \mathrm{OH} ; \operatorname{mp} 144-146^{\circ}$ dec. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{2} \cdot \mathrm{HBr}_{3}\right)$ N, Br.

The pure base 16 was obtained from these salts and crystallized from petroleum ether (bp $30-70^{\circ}$); mp $92-93^{\circ}$. In the ir, the compound in CHCl_{3} solution did not show Bohlmann bands ${ }^{20}$ in the $2700-2800-\mathrm{cm}^{-1}$ region. Resonance of the angular 10 b proton could be located at $\tau 6.0$, although partly masked by the
strong $\mathrm{CH}_{3} \mathrm{O}$ peak. ${ }^{21}$ The compound was not acetylated by $\mathrm{Ac}_{2} \mathrm{O}$-pyridine; it gave a methiodide, mp 237-239${ }^{\circ}$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{INO}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$; I: calcd, 27.7; found, 27.1.

5,6-Dihydro-2-cyclohexyl-8,9-dimethoxypyrrolo[2,1-a]isoquīnoline (14).-The AcOH-insoluble product, obtained in the preparation of 16, was dried and recrystallized (EtOAc), yielding $24.5 \mathrm{~g}(30 \%)$ of $14 ; \mathrm{mp} 122-123.5^{\circ}$. This was identical with the product obtained by cyclization (method A) (mixture melting point, ir). Further hydrogenation of pure 14 under the same conditions gave 16. However, application of more drastic conditions in the hydrogenation of 13 did not improve the yield of 16, owing to the formation of a large amonnt of an oily product, perhaps hydrogenolyzed, which was not further investigated.
$\mathbf{1 , 2 , 3 , 5 , 6 , 1 0 b}-H e x a h y d r o-2-p h e n y l-8,9-d i m e t h o x y p y r r o l o[2,1-$ a] īsoquinoline (15).-Compound $13(5 \mathrm{~g})$ in 400 ml of AcOH was hydrogenated with 0.8 g of PtO_{2} in a Parr apparatus for 25 hr at 25° under 5 atm . After filtering the catalyst, the solution was evaporated to a small volume at 50° under reduced pressure and then diluted with water. An insolnble fraction, separated by filtration, consisted mainly of inreacted 13. The acid filtrate was alkalinized with $\mathrm{NH}_{4} \mathrm{OH}$ and extracted with CHCl_{3}. The extracts were washed $\left(\mathrm{H}_{2} \mathrm{O}\right)$, dried, and then evaporated. The residue was crystallized from petroleum ether (bp $80-120^{\circ}$), yielding $1.6 \mathrm{~g}\left(31.6^{\%} \%\right.$) of $15, \mathrm{mp} 11 \overline{5}-117^{\circ}$. Further recrystallization from the same solvent gave an analytical sample, mp $121-123^{\circ}$. The ir and nmr spectra of 15 showed features similar to those of 16 as regards Bohlmann bands ${ }^{20}$ and 10b proton resonance. ${ }^{21}$ The ir spectrum (KBr disk) showed a band at $705 \mathrm{~cm}^{-1}$ which was present in the spectrum of phenyl derivative 13, but not in those of cyclohexyl derivatives 14 and 16. The nmr spectrum showed a peak at $\tau 2.67(5 \mathrm{H})$. When this hydrogenation was carried out at $4 \overline{5}-50^{\circ}(80 \mathrm{~atm}), 15$ underwent further hydrogenation and 16 was formed. Compound 15 was unaffected by $\mathrm{Ac}_{2} \mathrm{O}$ in pyridine at room temperature.

8,9-Dimethoxy-5,6-dihydropyrrolo $[2,1$ - $a]$ isoquinoline-2-acetic Acid (18) (Method C)-Compound 18 was obtained by refluxing a solution of 5 g of ester 17 and 5 g of KOH in 100 ml of EtOH for 2.5 hr , then diluting with $\mathrm{H}_{2} \mathrm{O}$ to a clear solntion, acidifying to pH 4.5 with AcOH , filtering, and recrystallizing (absolute EtOH): yield $3.8 \mathrm{~g}\left(83.5^{\circ} \mathrm{c}\right), \mathrm{mp} 159-160^{\circ}$ dec.

8,9-Dimethoxy-5,6-dihydropyrrolo $[2,1-a]$ isoquinoline-2,3-dicarboxylic Acid (30) (Method D)_-A solntion of 37.3 g (0.1 mole) of 29 in 1500 ml of 5% ethanolic NaOH was refluxed for 2.5 hr . The product precipitated as a disodinm salt. Most of the solvent was evaporated under reduced pressure and the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}$. The solution was filtered and acidified at 10° with dilnte HCl to pH 2 . The precipitated product was collected and crystallized (DMF-EtOH) giving 30 g (9.5%) of $30 \mathrm{mp} 228-230^{\circ} \mathrm{dec}$.

When 30 was heated at 200° for 20 min , the monocarboxylic acid 25 was formed. This was identical with an authentic sample both by mixture melting point and ir comparison. The isomeric diacid 35 was decarboxylated to 25 in the same way.

8,9-Dïmethoxy-5,6-dihydropyrrolo [2,1-a] ísoquinoline-2,3-dicarboxylic Anhydride (31) (Method E).-Componnd 30 (31.7 g) in 100 ml of $\mathrm{Ac}_{2} \mathrm{O}$ and 600 ml of dry Ph.Ve was heated to reflux with stirring. The acid dissolved and the anhydride began to separate as yellow plates within 1 hr . After 3 hr the mixture was cooled. The precipitate was filtered and recrystallized from dry dioxane giving $20.6 \mathrm{~g}(65 \%)$ of 31 : $\mathrm{mp} 239-240^{\circ}$; ir (KBr disk), 1860, $1770 \mathrm{~cm}^{-1}$.

8,9-Dīmethoxy-5,6-dihydro-2-(N-diethylaminoethylcarbamoyl)pyrrolo [2,1-a]isoquinoline-3-carboxylic Acid (32).-A mixture of 15 g (0.05 mole) of 31 and 5.8 g (0.05 mole) of N, N-diethylethylenediamine in 300 ml of dry $\mathrm{C}_{6} \mathrm{H}_{6}$ was refluxed with contimnous stirring for 5 hr . The yellow anhydride color disappeared and a white crystalline precipitate was formed. This was filtered and washed with hot EtOAc, giving $15.3 \mathrm{~g}(73.5 \%)$ of $32, \mathrm{mp} 166-168^{\circ}$. An analytical sample, crystallized from $\mathrm{C}_{8} \mathrm{H}_{6}$ and $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$, showed mp 170-172 , in (KBr disk) bands between 1640 and $1550 \mathrm{~cm}^{-1}$.

N-Diethylaminoethyl-8,9-dimethoxy-5,6-dihydropyrrolo [2,1-a]isoquînolīne-2-carboxamĩde (26). (a) Compound 32 ($\overline{0}$ g) was decarboxylated in an oil bath at 180° in 1.5 hr . The dark residue was triturated with $\mathrm{H}_{2} \mathrm{O}$, dried, and crystallized from EtOH-Et ${ }_{2} \mathrm{O}$ (charcoal) and Ph.Me, giving $2.6 \mathrm{~g}(58 \%)$ of 26, mp
(21) M. Lskokovic. H. Bruderer, C. von Planta. T. Williains, and A. Brossi, J. Am. Chem. Soc., 86, 3364 (1964).

144-146 ${ }^{\circ}$. An andytical sample, recrvstallized twice from PhMe, had mp 147-148.
(b) Compomid 24 (5g) was added to at solntion ol 0.4 g of X_{i} in 10 g of N, N-diethylethylenediaminc. The mixtmre was heated at $125-130^{\circ}$ for 7 hr . A little $\mathrm{H}_{8}()$ was added and most oi the amine was distilled moder rednced pressure. The residne was taken np in 10% Acorf. After filtering, the filloate was alkalinized with $\mathrm{NH}_{4} \mathrm{OH}$ and extracted winl CHICl_{3}. The extracts were washed $\left(\mathrm{H}_{2} \mathrm{O}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{~S}()_{4}\right)$, and evaporated; the residue was triturated with Et ${ }_{2}$) and (rystallized (Ph He) giving 26, mp 142-143 . This was identieal with the compomind ob)tamed by decarboxylation (mixture melting point, ir).

N,N-Dimethylaminoethyl 8,9-Dimethoxy -5,6-dihydro-2methylpyrrolo $[2,1-a]$ isoquinoline-3-carboxylate (21) (Method F) --A sohntion of $15.7 \mathrm{~g}(0.05$ mole $)$ of ethyl $\mathrm{S}, 9$-dimethoxy-5,6-dihydro-2-methylpyrrolo[2,1-a|isooninoline-3-carhoxylat (19) and 7 g (0.078 mole) of dimet hymmoethanol in 230 nm of PhJle was placed in the flask at the bothom of a Fenske-Todd "olumm and made anhydrons by distilling motil the boiling point reached 110°. Then $\overline{6} .8$ momoles of NaODt (4 ml of at 13° \% sohn(ion in anhydrons EtOH) was added and the solution was reflnxed while distilling the E1OlI (4 hr). The solntion was cooled. washed (IIOO), and extracted with lor, AcOII. The acid ex-
trachs were alkalinized with $\mathrm{NL}_{4}\left(11\right.$ and extmeted with Cllel h_{3}, and the extracts were dried and evaporated. The residne was (9ystallized from petroleum ether (bp 80-12t) ${ }^{\circ}$) giving 12.6 g

Ethyl 1-Morpholinomethyl-2-methyl-8,9-dimethoxy-5,6-dihydropyrrolo $[2,1-a]$ isoquinoline-3-carboxylate (27) (Method G)..- A colntion of $6.3 \mathrm{~g}\left(0.02\right.$ mole of $19^{5 \mathrm{c}}$ and $1.9 \mathrm{~g}(0.022$ mole)
 kept at 60° for 3 hr , then cooled, diluted (H, O) to 600 ml , filtered, made bavie with Nhlall, and extracted with EnU. The extracts were dried ($\mathrm{Na}_{\mathrm{n}} \mathrm{S}()_{4}$) and evaporated: the residne was arballized from petrolenm ether (bp 80-120 0° giving 3.8.
 $2.910,3.21,3.64,5.80$

Acknowledgments. The :uthors are indebted to Dr. (i . V. Marchetti for the preliminary hemodynanic data, and to Dr: C . Severini Rieca for deternimation and valuable help in interpretation of the nimr and mass spectra.

Urinary Metabolites of $\mathbf{7 - C h l o r o - 1 - (2 - d i e t h y l a m i n o e t h y l) - 5 - (2 - f l u o r o p h e n y l) - ~}$ 1,3-dihydro-2H-1,4-benzodiazepin-2-one Dihydrochloride

Mormon A. Schwartz, floie M. Tane, and Edwarid lostma
Hoffmenn-La hoche Ine, Xiveley, Viek Jersey Oillo
Received March 11, 1968

Abstract

Metabolites of the title compond (Ia) extracted from lmman and dog urine were characterized by a combina(ion of tle and high-resolntion mass spectrometry and were compared with authentic componnds prepared as described in the immediately following publication. ${ }^{1}$ Only one metabolite, 7 -chloro-1-(2 -hydroxyethyl)-5-($2-$ fluorophenyl)-1,3-dihydro-2H-1,4-benzodiazepin-2-one (IV), was detected as a glucosuronic acid and/or sulfate conjugate in urine of two human subjects given 60 mg of Ia orally. It was estimated that one subject excreted roughly $2 \bar{\sigma} \%$ of the administered drug in the first day as conjugated IV. Chronic oral administration of $40 \mathrm{mg} / \mathrm{kg}$ of Ia to a dog resnlted in the nrinary excretion of nonconjngated I, 7-chloro-1,3-dihydro-1-(2-ethylaminoethyl)-i-(2-flnorophenyl)-2H-1,4-benzudiazepin-2-one (II), and 1-(2-aminoethyl)-7-chloro-1,3-dihydro- $\overline{5}$-(2 -fluorophe-nyl)-2H-1,4-benzodiazepin-2-one (III), and the exrretion of conjngated II-IV, 7 -chloro-5-(2-fluorophenyl)-3-hy-droxy-1,3-dihydro-2H-1,4-benzodiazepin-2-one (VI), and a phenolic derivative of 7 -chloro-5-(2-flnorophenyl)-1,3-dihydro-2H-1,4-benzodiazepin-2-one whose strucure was not definitively established. In addition, 8 -chlorn(6 -(2 -fluorophenyl)-1, 2 -dihydro-4H-imidazo $[1,2$-a $][1,4]$ benzodiazepine (VII) was shown to be an artifact resnlting from tle of III.

The syathesis and a comparison of the phamacolog. of 7 -chloro-1-(2-diethylaminoethyl)-5-(2-fluorophenvl)-1,3-dihydro-2H-1,4-benzodiazepin-2-one dihydrochloride (Ia) with that of other 1,4 -benzodiazepines has been reported ${ }^{2}$ as well as the clinical use of this compound as a hypnotic. ${ }^{\text {a }}$

The combination of thin layer chromatography (tle) for metabolite isolation and purification and lighresolution mass spectrometry for characterization has been used to identify the metabolites in the rat of ${ }^{3} H$-labeled diazepain ${ }^{4}$ and ${ }^{14} \mathrm{C}$-labeled chlordiazepoxide. ${ }^{\bar{\prime}}$ In the present study these combined techniifucs were utilized to identify one metabolite of

[^6]anlabeled La in human arine and five metabolites in dog urine.

Experimental Section

Urine Specimens.---The human nrine was obtained from (wo female subjects who erach received a $60-\mathrm{mg}$ oral dose of Ia. Two collections were made: one consisted of the '24-hr urinc exreted prior to drug administration (control urine) and the other wan th, urine excreted during the first day after dosing.

The dog nrine was obtained from one animal which had received all oral dose of $40 \mathrm{mg} / \mathrm{kg}$ of Ia (in a gelatin capenle) daily for 6 months and from another which had not received the drug. Both of these samples were approximately 100 ml .

Isolation Procedures.--Each nrine sample was first fractionaten! l,y solvent extraction. The mrine adjnsted to pH 9.0 with 1.1 Na(lH was extracted twice with equal volnmes of ether. Tbe combined ether extract which contained any I present plas nentral and basic nompolar metabolites was concentrated to an oil and hronght to 1 ml with EtOH. The aqueons phase was then adjusted to pll $\overline{7.0}$ with $1 . N \mathrm{HCl}$ and extracted twice with regal volnmes of EttiAe to remove neutral but nore polar metabolites. The combined EtOAc extract was dried ($\mathrm{Na}_{2} \mathrm{~S}\left(\mathrm{O}_{4}\right)$ and after evaporation of the solvent was bronght to 1 ml with Etoll aud derignated "EtAe B.G." Now the aquerns phase was adjnsted to pH . S .5 , inmbated for 3 hr at 37° with Glnsnlase ${ }^{6}$
(6) l'roduct oi End, lat,s line., Garden City, N. Y.. which, mbtains 100,000 n mits of b-sencoronidase and 50,000 units of sulfatase, ml.

[^0]: (1) (a) A. Brossi. H. Lindlar, M, Walter, and O. Solnider, Helv. Chim. Acta, 41, 119 (1958) : (b) A. Scrialine, A. Weissman, K. F. Finger, C. S. Delahunt, J. W. Constantine, and J. A. Sclineider, J. Am. Med. Assoc., 184, 276 (1963).
 (2) A review has been published 1 y W. L. Mosby. "Heterocyclic systems with bridgehead nitrogen atoms." Interscience Publishers, Inc., New York, N. Y.. 1961, p 344. Other recent contributions include V. Prelog. A. Langenmann, O. Rodig, and M. Terubah. Helv. Chim. Acta, 42, 1301 (1959); V. Carelli, F. Liberatore, and F. Morlacehi, Ann. Chim. (Rome), 51, 467 (1961): R. M. Acheson and F. Hole, J. Chem. Soc., 748 (1962); W. Schneider and R. Menzel, Arch. Pharm., 295. 911 (1962): R. Huisgen, R. Grashey, and E. Steingruber, Tetrahedron Letters, 1441 (1963); R. Huisgen and H. Seidl, ibid., 2019, 2023 (1963): A. Mondon. Tetrahedron. 19, 911 (1963): T. Kame$\operatorname{tani}, ~ R$. Yanase, and S. Takamo, Yakugaku Kenkyu, 37, 23 (1966); Chem. Abstr.. 65, $15320 b$ (1966): F. Zymalkosky and F. Schmidt. Arch. Pharm., 300, 230 (1967).
 (3) A. Brossi, H. Besendorf, B. Pellmont, M. Walter, and O. Schnider. Helv. Chim. Acta. 43, 1459 (1960).
 (4) (a) A. E. Tschitschilabin, Ber., 60, 1607 (1927); (b) W. L. Mosby, ref 2, p 239.
 (5) (a) R. H. Sprague, U. S. Patent 2.622 .082 (1952): Chem. Abstr., 47, $3159 a$ (1953); (b) J. Tlesinger and F. H. Funk, Chem. Ber.. 91, 1546 (1958): (c) Y. Ban and M. Terashima, T'etralvedron Letters. 796 (1961).

[^1]: (6) See ref $4 b$ and references cited therein.
 (7) Since this work was completed, compound 14 has been reported by S . Sakai, A. Kubo. M. Inaba, M, Katagiri, and K. Tanno, Yakugaku Zashi, 86, 856 (1966); Chem. Abstr., 65, 18558g (1966),

[^2]: (8) Reaction between etlyyl 2-pyridylacetate and ethyl chloropyruvate lad raised some doubts: D. R. Bragg and D. G. Wibberley. J. Chem. Soc., C. 2120 (1966).

[^3]: 9) C. Bianchi and G. Franceschini, Brit. J. Pharmacol., 9, 280 (1954). (10) C. Bianchi, ibid., 11, 104 (1956).
 (11) P. L. Broadhurst in "Experiments in Personality." Vol. 1, H. J. Eysenck, Ed., Routlegde and Kegan, London, 1960. p 30.
 (12) G. Marchetti, L. Merlo. L. Lombardi, and M. Cicardi. Arch. Ital. Sci. Farmacol., 14, 33 (1964).
[^4]: (13) M, R. Nalinıw, F. F. Battle, and B. Malamud, Arck. Intern, Pharmocodign. 102, 226 (1955).
 (14) 1). 1. Mache and J. Barba-Gose, I. Am. Tharm. Assoc. 20, 5.58 (10331)
 i1i) M. Bergamaschi. A. H. Giässer, and L. Valentini. Karmaco, Ea, Prat. 18. 964 (1963).
 (1it) V. P. Veragnt and ll. P. Krayenhtibl. Curdiologia, 47, 96 (196i).
 (5) G. V. Marchetti, L. Merlı, and V. Noseda, Arch. Ges. I'hymiol, 298. $200(1968)$.

[^5]: lished elsewhere.
 (19) Where analyses are indicated only by symiols of the elranelns w functions, analytical resulis were within $0 .+1 / 6$ of the theoretical valne.

[^6]: (1) J. V. Larles, R, l. Fryer, D). Winter, and L. H. Sternhach, J, Meq. Chem.. 11, 74 (1968).
 (2) (al l. LI, Sternbach, G. A. Arher, J. V. Eariey, R. l. Fryer, E. Reeder, N. Wasyliw, 1. O. Randall, and R. Banziger, ibid., 8, 815 (1965), designated as 12. (1) See (G . Zhinden and l. O. Randali, Adean. Fharmacol. 5, 254, 2,18 (1967). Lur animal pharmacology and chinical pharmachiogy of this comphombl whinh is Iesignated Ro $\overline{1}-6001$.
 12(0)-6901.
 121, 505 (1!671.
 in Mes.

